Knowledge Discovery in Microarray Data

نویسنده

  • Rafiqul Islam
چکیده

We present a method of prioritizing potential drug targets based on their gene expression “signature”. Primary human pre-cursor neuronal cells were treated with three classes (antidepressant, antipsychotic, opiod receptor agonist) of psychoactive drugs for 24 hours. Microarray technology was used to capture expression of ~11, 000 genes induced by these three categories of drugs. It was demonstrated that a Neural Network model and a Decision Tree (C5.0) model could classify these drugs based on their gene expression with 80% and 92 % accuracy, respectively. TwoStep clustering algorithm was used to separate gene expression profiles into natural groups. When cluster information was used as input for the Neural Network model, classification accuracy increased to 88%. It was also demonstrated that the confidence index generated by each classification model could successfully be used to prioritize a portfolio of novel drug targets. Refreshments will be served at 3:00 pm. For further information: [email protected] (860) 832-2839 [email protected] (860) 832-2851

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data

Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...

متن کامل

Bisociative Knowledge Discovery for Microarray Data Analysis

The paper presents an approach to computational knowledge discovery through the mechanism of bisociation. Bisociative reasoning is at the heart of creative, accidental discovery (e.g., serendipity), and is focused on finding unexpected links by crossing contexts. Contextualization and linking between highly diverse and distributed data and knowledge sources is therefore crucial for the implemen...

متن کامل

Semantic Subgroup Discovery Systems and Workflows in the SDM-Toolkit

This paper addresses semantic data mining, a new data mining paradigm in which ontologies are exploited in the process of data mining and knowledge discovery. This paradigm is introduced together with new semantic subgroup discovery systems SDM-search for enriched gene sets (SEGS) and SDM-Aleph. These systems are made publicly available in the new SDM-Toolkit for semantic data mining. The toolk...

متن کامل

Designing an Ontology for Knowledge Discovery in Iran’s Vaccine

Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...

متن کامل

Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis

Gene expression profiling using DNA microarray technique has been shown as a promising tool to improve the diagnosis and treatment of cancer. Recently, many computational methods have been used to discover maker genes, make class prediction and class discovery based on gene expression data of cancer tissue. However, those techniques fall short on some critical areas. These included (a) interpre...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005